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LE7TER TO THE EDITOR 

Ising model on a 3~ Sierpinski gasket with a non-trivial phase 
transit ion 

Thomas A Larsson 
Department of Theoretical Physics, Royal Institute of Technology, S- 100 44 Stockholm, 
Sweden 

Received 6 December 1984 

Abstract. We derive and solve exact recursion relations for a multispin interaction king 
model on a 3~ Sierpinski gasket. In addition to the high- and low-temperature fixed points 
we find three non-trivial fixed points, which govern the behaviour of two new, 'multiple-of- 
2', phases. These phases are characterised by the absence of any tetrahedron with an odd 
number of up spins. 

There has recently been an upsurge of interest in solving statistical mechanics problems 
formulated on fractal lattices (e.g. Gefen et al 1981, 1983, 1984a, b, Alexander 1981, 
Stephen 1981). The reason for this is at least twofold. A regular fractal can be 
considered as a crude approximation for a disordered system at its percolation 
threshold, and results obtained for fractals may have some relevance for real random 
systems. More important, however, is that exact renormalisation group ( RG) transfor- 
mations can be devised for a certain class of so-called finitely ramified fractals (Nelson 
and Fisher 1975, Gefen et a1 1984a). A fractal with finite ramification can be cut into 
two disjoint pieces by removing a finite number of bonds. Unfortunately, the Ising 
model with only nearest-neighbour interactions does not seem to have any phase 
transition at non-zero temperature on such a lattice. The purpose of this letter is to 
show how introduction of multisite interactions may result in a non-trivial phase 
transition. 

Consider a three-dimensional Sierpinski gasket. A topologically equivalent con- 
struction is shown in figure 1, but the reader who wishes to see a more artistic view 

a:.. 

-. 

Figure 1. Stagewise build-up of a topological equivalent to the 3~ Sierpinski gasket. The 
endpoints of the dotted lines are to be identified, or equivalently, the broken lines carry 
infinite interactions. The unit cell is topologically a tetrahedron. 
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should consult klandelbrot’s book (1982, p 143). We take the negative of the Hamil- 
tonian to be 

C [J464(~i ,  sj, sk,  S I ) +  J363(Si, Sj,  Skr ~ I ) I + E o .  (1) 
( i jkl) 

The sum is performed over all elementary tetrahedra, and we have introduced new 
functions 8,( . , , ). These are defined to equal unity provided that exactly n of its 
arguments are identical, and zero otherwise. Of course, we could have used ordinary 
6 functions to express the same relations, but the 8,’s provide a compact and convenient 
notation. Our model is the same as the one considered by Gefen et aI (1984a), but 
we use different variables to describe it. Our coupling constants can be expressed in 
terms of the interactions appearing in their Hamiltonian ( 3 . 6 ) :  

J4=8K,  J 3 = 2 K  - 2 L ,  Eo= - 2 K  + L + A .  ( 2 )  

In particular, the ordinary nearest-neighbour Ising model is embedded along the line 
J4 = 45,. 

Exact decimation yields the following recursion relations for x = exp( J4)  and 
Y = exp(J3). 

3 + 3 0 y 2  + 8y4+ x(4+ 1 2 ~ ’ )  + 6 x 2 y 2  + x4 
2 + 2 6 y 2 + 8 y 4 + x ( 4 + 2 0 y 2 ) + x 2 ( 2 + 2 y 2 )  

I3 + 2 4 y 2 +  x (  15 + 8 y 2 )  +3x2+ x3 
2 + 2 6 y 2 +  8y4+ x ( 4 +  2 0 y 2 )  +x2(2+ 2y2)’  

XI = 

y ’ = y .  
(3) 

A sketch of the RG flows in parameter space appears in figure 2.  There are five different 
fixed points. The stable high-temperature fixed point is located at (x, y )  = ( I ,  1 )  and 
the marginally unstable low-temperature fixed point lies at (00,oo). From the latter 
fixed point’a semi-stable line emerges. The equation of this line is to first order x = 2 y 2  
or J 4 =  2J3+1n 2 .  Points outside the line are attracted to it, and then they move very 

Figure 2. Renormalisation group flows in the x) 
plane. The full line indicates the location of the 
nearest-neighhour Ising model. Fixed points are 
marked with dots. The broken line is the semi-stable 
line emerging from the low-temperature fixed point. 

m~ 
0 5: 

’\ 

Figure3. Spontaneous magnetisation m as a function 
of Y’ ,  when y = 0. 
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slowly away from the fixed point along this line. This corresponds to a dramatic 
increase in the correlation length, and in fact this length diverges as an exponential 
of an exponential of the inverse temperature. 

The phase diagram is not exhausted with the above, however. On the line y = 0 
we find three additional fixed points, at x = 1, x = 3, and x = a. A vanishing y implies 
that no elementary tetrahedron can have three spins pointing in the same direction, 
and the fourth in the opposite one. The fixed point x = 1 acts as a sink for a new 
disordered phase, which exhibits no long-range magnetisation but excludes all configur- 
ations where any tetrahedron has an odd number of up spins. We propose to call this 
phase a disordered ‘multiple-of-2’ phase. Similarly, we have an ordered multiple-of-2 
phase, which flows into x = CC under the RG. x = 3 are the critical fixed points that 
divide these two regimes. The thermal scaling powers at the critical point are y ,  = 1 
in the direction of the y axis, and yz = In $/ln 2 = 1.807 36 away from it. 

In order to calculate the magnetic scaling power we add a symmetry-breaking term 
to the Hamiltonian. 

-%st,= h[26,(si, sjj s k ,  Sf, 1)-1I. 
( i ikl)  

In the subspace y = 0, the recursion relation for h becomes to first order 

4x + 4x4 
3 + 4 x + x 4  

h ’ =  h = a(x)  ‘ h, 

(4) 

from which we deduce that the magnetic scaling power yh = In $/ln 2 = 1.807 36. From 
( 5 )  we can also calculate the spontaneous magnetisation, at any temperature, using 
the formula 

where b = D = 2 for the Sierpinski gasket, and x”) is the ith iterate of x. The spontaneous 
magnetisation is plotted in figure 3. 

It is easy to understand the origin of these new phases. If we let each elementary 
tetrahedron contain only 0, 2, or 4 up spins, there is no way to arrange four tetrahedra 
so that the renormalised object (the ‘supertetrahedron’) has an odd number of up 
spins. It is non-trivial, however, that this ‘multiple-of-2’ system exhibits a continuous 
phase transition at a finite value of the coupling constant. 

We can easily generalise the multiple-of-2 phases to Sierpinski gaskets in arbitrary 
dimension. The unit simplex (triangle, tetrahedron, etc.) has d + 1 = p ,  p z  . . . . p N  
corners, where the pi’s are prime numbers. If each unit simplex has a multiple of p ,  
up spins, the ‘supersimplex’ obtained after renormalisation will also have this. Hence, 
unless d + 1 is a prime number, we will have different ‘multiple-of-p’ phases. Whether 
or not there will be any non-trivial phases transitions among these phases remains of 
course an open question, but our personal opinion is that it is very likely. 

In conclusion, we have solved exactly an Ising model with multispin interactions 
on the three-dimensional Sierpinski gasket. In addition to the fixed points found by 
Gefen et al, we also found three new fixed points, corresponding to ‘multiple-of-2’ 
phases. Although the transition between these does not strictly occur at a non-zero 
temperature, since J3 = --CO, it is to our knowledge the first example of a non-trivial 
phase transition in a spin model on a finitely ramified fractal lattice. Unfortunately, 
the existence of multiple-of-2 phases is possible only on extremely regular structures, 



L152 Letter to the Editor 

like Sierpinski gaskets. On the disordered systems, which the gaskets are supposed to 
model, this regularity is not present. Consequently, the phase transition which we 
found in this letter does not have any relevance for real systems, but represents a mere 
mathematical amusement. 
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